ROB PAPEN B.I.T.-RE

MANUAL ADDENDUM

Introduction & Welcome

B.I.T. stands for - Back In Time -

Instead of combining the best of analogue modelling with hybrid synthesis, which we can see with the other Rob Papen synthesizers, B.I.T. focuses on Analogue Modelled Synthesis. Why this move you might think?

The idea behind it is that the classic analogue type of synthesis has its own charm and simply has not yet been covered by the Rob Papen brand. So, no spectrum waveforms, or samples inside B.I.T. nope, it is pure 'Analogue Modelled' synthesis.

Although B.I.T. has no patch cables, it is modular by all means!

The Modulation Matrix is used for patching, however also included is the smart 'advanced' panel below the Oscillators. With these advanced features you can quickly make several connections such as LFO and Envelope to the Oscillator parameters inside of B.I.T. Also included is the option to modulate Oscillator 2 by Oscillator 1 in several ways which expands the sound pallet with Phase Modulation, Frequency Modulation and Ring Modulation.

A Rob Papen synthesizer would of course be incomplete without the arpeggiator (which can also work in sequencer mode), so a fully featured Arp is available and has an additional free row that you can use to modulate other parts of B.I.T. by using the Modulation Matrix.

Adding the finishing touch to B.I.T. is of course the FX section. Some superb sounding FX are added.

Our top-notch Reverb is also included inside B.I.T. which means you won't have to go outboard for adding reverb.

As previously mentioned B.I.T. stands for - Back In Time - however it can also mean 'Be Inspired Today' whilst using our Analogue Modelled Synthesizer.

Enjoy

Rob Papen and Team

This manual is in addition to the main B.I.T. Manual, describing the differences between the VST / AU and the RE version. For information about oscillators, filters etc, please read the main B.I.T. Manual.

Presets

At the top of B.I.T. you can find the preset browser section.

Preset Controls

B.I.T. uses the standard Reason preset controls. Clicking on the preset menu displays a list of presets in the current folder and clicking on the up / down buttons next to the menu allows you to scroll through the presets.

Clicking he Patch Browser button will display the patch file browser and allow you to load in presets from other bank folders.

The Save Patch button, allows you to save the current preset.

The C3 button will preview (play) the current preset.

Mod Wheel / Pitch-Bend

Pitch Bend Controls

The pitch bend wheel allows you to pitch bend the currently played sound. The Bend Down and Up controls set the pitch change range when you move the pitch bend wheel up or down. Bend Down ranges from Off, down to - 48 semitones (-4 octaves) and Up ranges from Off, up to +48 semitones.

Mod Wheel

This simulates mod wheel input into B.I.T.

Back Screen

In B.I.T.'s back panel are various connections for inputs and outputs

Input Section

Here you can connect the Note / Gate CV inputs so that other Reason devices can control B.I.T.

Also, you can have left / right audio input, these are used as modulation sources, with mod input smoothing, smooths this input.

You can also route the audio input so that it passes into the effects and also adjust by using the Input Volume dial.

Note Input

Here you can control B.I.T. via external CV Gate and Note values.

CV Input

B.I.T. has 4 CV inputs, which can be used as modulation sources. Also you can change the values of the FX mix via these.

Gate Input

B.I.T. has several gate inputs (for the oscillators and free envelope / LFO), which when triggered resets these modulators.

CV Output

B.I.T. has CV outputs for the free envelope/LFO, arpeggiator pitch and velocity and free outputs (which can be set to any values via the modulation matrix).

Output

Here you can output final audio output of B.I.T.

Appendix - Modulation Sources

None

MIDI Source Modulations

Mod Wheel

After - Aftertouch

Mod/After - Modulation-wheel or aftertouch

Velocity

Pitch Bend

Breath

Expression

Sustain

Note - Modulation value from 0% (Midi Note 0) to 100% (Midi Note 127)

Centre Note – Modulation value centred at MIDI Note 57, going up an Octave increases it by 100%, down by 100%.

Note Random 1 - Random value generated when note pressed from -100 to +100%

Note Random 2

UniPolar Note Random 1 – Random value generated when note pressed from 0 to $\pm 100\%$

UniPolar Note Random 2

Osc 1 Modulation Sources

Osc 1 LFO - Polar Oscillator 1 LFO output from -100% to +100%

Unipolar Osc 1 LFO - Unipolar Oscillator 1 LFO output from 0 to +100%

Osc 1 Envelope

Osc 1 Envelope x Osc 1 LFO - Oscillator 1 LFO multiplied by envelope

Osc 2 Modulation Sources

Osc 2 LFO - Polar Oscillator 2 LFO output from -100 to +100%

Unipolar Osc 2 LFO - Unipolar Oscillator 2 LFO output from 0 to +100%

Osc 1 x 2 - Oscillator 1 LFO multiplied by Oscillator 2 LFO

Unipolar Osc 1 x 2 - Unipolar Oscillator 1 LFO multiplied by Oscillator 2 LFO

Osc 2 Envelope

Osc 2 Envelope x Osc 2 LFO - Oscillator 2 LFO multiplied by envelope

Osc 1 x 2 Envelope – Oscillator 1 Envelope multiplied by Oscillator 2 Envelope

Modulation Mod Sources

Pitch LFO

UniPolar Pitch LFO

Free LFO

UniPolar Free LFO

Filter 1 Envelope

Filter 2 Envelope

Arp Velocity

Arp Free

Output Mod Sources

Oscillator 1 Output

Oscillator 2 Output

Oscillator 1 + 2 Output

Filter 1 Output

Filter 2 Output

Output

Offset - Constant 100% value

White Noise

UniPolar White Noise Pink Noise UniPolar Pink Noise

Input

Smooth In - Smoothed Input Input Left Input Right CV 1 - CV Input 1 CV 2 - CV Input 2 CV 3 - CV Input 3 CV 4 - CV Input 4

Notes

UniPolar LFO / Noise modulation sources go from 0 to 100%, the normal LFO / Noise modulation sources go from -100% to%100

<u>Appendix - Modulation Destination</u>

None

Global - Main Control destinations Portamento Amount Global Semi-Tune Global Fine-Tune Arp Speed Arp Swing Arp Velocity/Key

Unison – these destinations allow you to control each of the 4 unison voices individually

Unison Detune

Pitch LFO Speed Pitch LFO Amount

Unison Stereo Spread Unison Semi-Tune 2-4 Unison Semi-Tune 2 Unison Semi-Tune 3 Unison Semi-Tune 4 Unison Fine-Tune 2-4

Unison Fine-Tune 2

Unison Fine-Tune 3

Unison Fine-Tune 4

Unison Volume 2-4

Unison Volume 2

Unison Volume 3

Unison Volume 4

Unison Pan 2-4

Unison Pan 2

Unison Pan 3

Unison Pan 4

Unison 2 -4

Unison Filter 2

Unison Filter 3

Unison Filter 4

Oscillator 1 – Oscillator 1 destinations

Osc 1 Volume

- Osc 1 Semi-Tune
- Osc 1 Fine-Tune
- Osc 1 Sym/BW
- Osc 1 Feed
- Osc 1 Phase
- Osc 1 LFO Speed
- Osc 1 LFO Phase
- Osc 1 LFO > Volume
- Osc 1 LFO > Tune
- Osc 1 LFO > Sym/BW
- Osc 1 LFO > Feed
- Osc 1 Envelope Speed
- Osc 1 Envelope Attack
- Osc 1 Envelope Decay
- Osc 1 Envelope Sustain
- Osc 1 Envelope > Volume
- Osc 1 Envelope > Tune
- Osc 1 Envelope > Sym/BW
- Osc 1 Envelope> Feed

Oscillator 2 - Oscillator 2 destinations

- Osc 2 Volume
- Osc 2 Semi-Tune
- Osc 2 Fine-Tune
- Osc 2 Sym/BW
- Osc 2 Feed/Mod
- Osc 2 Phase
- Osc 2 LFO Speed
- Osc 2 LFO Phase
- Osc 2 LFO > Volume
- Osc 2 LFO > Tune
- Osc 2 LFO > Sym/BW
- Osc 2 LFO > Feed/Mod
- Osc 2 Envelope Speed
- Osc 2 Envelope Attack
- Osc 2 Envelope Decay
- Osc 2 Envelope Sustain
- Osc 2 Envelope > Volume
- Osc 2 Envelope > Tune
- Osc 2 Envelope > Sym/BW
- Osc 2 Envelope > Feed/Mod

Sub-Osc + Noise - Sub-Oscillator & Noise Oscillators destinations

- Sub-Osc Volume
- Sub-Osc Semi-Tune
- Sub-Osc Symmetry
- Sub-Osc Phase
- Noise Osc Volume

Filter 1

- Filter 1 Frequency
- Filter 1 Q
- LFO > Filter 1 Frequency
- Filter 1 Envelope Amount
- Filter 1 Envelope Speed
- Filter 1 Envelope Attack
- Filter 1 Envelope Decay
- Filter 1 Envelope Sustain
- Filter 1 Envelope Fade

Filter 1 Envelope Release

Filter 1 Output

Filter 1 Pan

Filter 2

Filter 2 Frequency

Filter 2 Q

LFO > Filter 2 Frequency

Filter 2 Envelope Amount

Filter 2 Envelope Speed

Filter 2 Envelope Attack

Filter 2 Envelope Decay

Filter 2 Envelope Sustain

Filter 2 Envelope Fade

Filter 2 Envelope Release

Filter 2 Output

Filter 2 Pan

Amp - Amp destinations

Main Volume

Distort Amount

Main Pan

LFO > Volume

Amp Envelope Speed

Amp Envelope Attack

Amp Envelope Decay

Amp Envelope Sustain

Amp Envelope Release

Mod - LFO / Modulation Matrix destinations

Free LFO Speed

Free LFO Phase

Free LFO Shape

Free LFO Phase

Mod 1 Amount

Mod 2 Amount

Mod 3 Amount

Mod 4 Amount

Mod 5 Amount

Mod 6 Amount Mod 7 Amount

Mod 8 Amount

FX - Destination for the Chorus, Phaser / Flanger, Delay & Reverb.

Chorus Length

Chorus Width

Chorus Speed

Chorus LP

Chorus HP

Chorus Mix

Flanger Length

Flanger Width

Flanger Speed

Flanger Feedback

Flanger Pan Mod

Flanger Mix

Phaser Pitch

Phaser Feedback

Phaser Width

Phaser Speed

Phaser Pan Mod

Phaser Mix

Delay Left Length

Delay Right Length Delay Length

Delay Fine Length

Delay Feedback

Delay LP

Delay HP

Delay Mix

Reverb Pre-Delay

Reverb Size

Reverb Length

Reverb Damp

Reverb HighPass

Reverb Mix

CV Out 1

CV Out 2

Osc 1 Volume

Osc 2 Volume